symbollc logic,
binary calcuiation,
and 3C-PACs

@ ROBERT W. BROOKS

COMPUTER CONTROL COMPANY, inc.

92 broatd street
wellesley 517, massachusetts

Bibliography

Brooks, R. W., "Extension of the Veitch Chart Method
in Computer Design'', meeting of Association for
Computing Machinery, Cambridge, Massachusetts,
September, 1953.

Karnaugh, M., "The Map Method for Synthesis of Com-
binational Logic Circuits", AIEE Summer General
Meeting, Atlantic City, New Jersey, June, 1953.

Varnum, E. C., ""Binary Matrix Analysis of Relay Cir-
cuits', Machine Design, 1949,

Veitch, E. W., "A Chart Method for Simplifying Truth
Functions', meeting of Association for Computing
Machinery, Pittsburgh, Pennsylvania, May, 1952.

For the most advanced

equipment and services...

logical systems
digital computers
pulse data handling
Computertr Control Company Il nc
92 Broad Street Wellesley 57, Mass.
WEllesley 5-6220
© 1955, ccc

Printed in USA

st

3

e R

SYMBOLIC LOGIC, BINARY CALCULATION, AND 3C-PACs

Robert W. Brooksx*

1. Introduction

It is a remarkable and useful fact that extremely complex logical manipulations and nu-
merical computations can be built up from a few simple operations. The basis for such opera-
tions is a form of symbolic logic which deals with the question of whether a certain relationship
is "true' or ''false' under a given set of conditions. These two "true' and "false ' alternatives
are of great practical value since they can be represented conveniently by physical equipment;
for example, by a light being on or off, a relay open or closed, a vacuum tube conducting or
nonconducting, or a voltage pﬁ-l—ée béﬂl_g present or absent. As is shown later, this type of in-
strumentation is ideal for computations with binary numbers.

Fig. 1. Representation of conditions and connectives of symbolic logic.

Condition Connective
true false, not nd v
(assertion) (negation) a ©
Written -
Symbol A A (A- B) (AvB)
Schematic A ’—»
Representation B
gate buffer
positive d-c voltage
Common d-c voltage polarity summing
Equipment (through feed) reversal coincidence circuit
Forms detector and
pulse no limiter
present pulse
Logical relationships, or statements, are built up by the use of three connectives: 'and'",

"or'", and ''not", represented symbolically in Fig. 1. Not represents negation, or opposition.

For example, if condition "A" is true, then condition "not A" is false. The connective and may
join two conditions to indicate that "A and B" is true only when both "A' and " B" are true. The
connective ''and' is thus restrictive in the sense that it requires that two conditions be simul-
taneously true. The connective or indicates that "A or B" is true whenever either "A" or ""'B"
(or both "A'" and '""B') is true. The connective or is thus less restrictive in that it can be true
under three possible conditions. ——

*Vice-President, Computer Control Company, Inc.

c 0o0Mm P U T E R Cc O N T R O L c 0O M P A N Y I N C

Fig. 2. Truth table showing 4 basic conditions of 2 variables and effects of connectives
not, and, or.

4 Basic

Truth not and or not-and not-or (etc.)
Conditions

A B A B (A- B) (AvB) (A- B) (BAvB) (A- B) (AvB)
0 0 1 1 0 0 1 1 0 1

0 1 1 0 0 1 0 1 1 0

1 1 0 0 1 1 0 0 0 1

1 0 0 1 0 1 0 1 0 1

1 =true 0 = false

2. Truth Tables and Logic Charts

Several graphical methods have been devised for representing logical relationship among
variables. A simple tabular method employs ''1'" to indicate true and "0" to indicate false.
For two variables A and B there are four possibilities shown in the truth table of Fig. 2. The
effect of the three connectives on the truth statements can also be seen.

A O 1 B A 0 1 B A 0 1 B A 0 1 B
0 1 2 1 2 1 0
1 3 4 1 1 3 1 3 4
2-variable B —
logic chart A A
A O 1 B A 0 1 B A 0 1 B B
0 2 0 1 2 0
1 4 11 3 1 1(3 |4

B (A- B) (AvB) (A. B)

shaded = true unshaded = false

Fig. 3. Logic charts showing conditions of 2 variables.

The four combinations of two variables can also be represented conveniently on a rec-
tangular chart having four squares, as in Fig. 3. The shaded squares indicate ''true' and the
nmshaded squares indicate ''false'. The charts for two variables and the effect of the three
connectives are shown in Fig. 3. There are 16 possible combinations, or 22n with n being the
number of variables. -

Cc 0O Mm P U T E R Cc O N T R O L Cc O M P A N Y I N C

All combinations of three variables A, B, and C can be represented on the logic chart
of Fig. 4 having eight squares. The number of such possibilities is 223 = 28 - 256. The method
for building up a simple logical statement in three variables such as (A + B) v (C), is also
shown in Fig. 4.

00 1 2 00 1 2
01 3 4 01
11 5 6 11 51 6 11
10 7 8 10 71 8 10
3—'variable A B
logic chart
AB O 1 C AB 0 1 C AB 0 1 C
00 1 2 00 1 00
01f 01 3 01
11 5 6 11 5 11
10 7 8 10 7 10
(A B) C f=(A- ByvC

Fig. 4. Three-variable logic chart and construction of the function (A- B) v C

3. Logical Implementation

To implement logical statements with physical equipment, it is necessary merely to have
signals which represent the true and false conditions (for example, positive and negative volt-
ages), and physical components which symbolize the three connectives defined in Fig. 1. The
connective not is represented by a form of "inverter'' which might, for example, produce a
negative signal when it receives a positive one, or produce no pulse when it receives a pulse.
Such a '""'not'' component will thus produce '"'not A' (A) when it receives ""A'", or will produce
"B'" when it receives "not B" (B).

The "and'' connective is represented by a gate, shown symbolically in Fig. 1. Phys-
ically, the gate is a component which requires that all of its inputs be true in order that the out-
put be true. If there is one false input, the output will be false.

The element which produces the "or' connective is called a buffer. In effect, the buffer
is merely a direct connection between several variables so that if one or more of the variables
is true, a ''truth' will appear at the buffer output.

—4-

Cc 0o M P U T E R C 0O N T R O L C 060 Mm P A N Y I N C

To represent any function of three variables, the combined gate and buffer instrumenta-
tion of Fig. 5 can be used. This consists of eight separate gates each having three input legs.
Each of these gates corresponds to one of the eight squares in the three-variable table of Fig.
4. The truth of a statement can be determined by implementing the truth, or shaded, squares

?YY??YYY

(A B) v C

~
oot

it
- !
re 3>
I~ oJ

N
[N}
D
@]

Fig. 5. Use of 8 gates and buffer for 3-variable function.

of the table. The eight-gate structure of Fig. 5 is shown set up to represent the truth of the
simple statement (A - B) v(C) of Fig. 4. The false of a statement can be represented by merely
implementing the unshaded squares of the logic chart.

GATES
-
—
— 4-Leg
. 7 . BUFFER
4-Leg < Assertion
Gates —— i f
—
—
~ AMPLIFIER
P & INVERTER
—
—— (one pulse period)
2 — ; }.—
3-Leg < Negation
Gates —
—
—

Fig. 6. 3C-PAC, a simple and versatile Gating Package.

4. The 3C-PAC, A Simple and Versatile Gating Package

In Fig. 6, the 3C-PAC Gating Package by Computer Control Company, Inc. is shown.
This simple four-gate package can perform all of the functions possible with the eight-gate
package of Fig. 5. In addition to being able to handle all functions of three variables, the 3C-
PAC can handle 51, 358 functions of four variables and m: many functions of five or more varia-

bles.

c oM P U T E R C 0ON T R O L C OM P A N Y I N C

-
(o

o
-

The four-gate 3C-PAC of Fig. 6 can replace the eight-gate package of Fig. 5 because of
the use of the inverter at the output. (The purpose of the one-pulse-period delay is described
later in Section 5.) The output inverter permits either the truth or the false of the output to be
selected as desired. The gates are used to represent either the shaded or the unshaded squares
in the chart, whichever is the lesser in number. It can be seen that four is the maximum num-
ber of gates required, and many three-variable functions can be represented by using three or

fewer gates.

The general rules for implementing any function of three variables with the 3C-PAC
Gating Package are as follows:

1. Shade in the squares of the three-variable chart that represent the truth of the de-
fined function {.

2. If the number of shaded squares is four or less, implement the function f by making
the connections that correspond to the shaded squares. The positive outgut lead in-
dicates the truth f of the function represented; the negative output lead represents
the false f.

3. 1If the number of shaded squares is greater than four, implement the function f by
making the connections that correspond to the unshaded squares (i.e., implergent
the false f of the function). The negative output lead represents the truth f of the
described function; the positive output lead represents the false f of the function.

A — =
B —*=, .
AB 0 1 C c ™
b—
0 0 A Assertion o
01 B —™ v
C —al® DELAY
11 —— AMPLIFIER
1o A | & INVERTER
B —»7
f = shaded C —= : f=(A- B)vC
_ Negation
f = unshaded —
]
—

f = instrumented
Fig. 7. Representation of 3-variable function with 3C~-PAC.

_ In Fig. 7, the 3C~PAC is shown set up to represent the same three-variable function
(A - B) v C, treated in Figs. 4 and 5. Note that the three unshaded, or false, squares are im-
plemented, and that the true function f is taken from the negation output.

The 3C-PAC Gating Package of Fig. 6 can be seen to have two 4-leg gates. In later

Section 11, it is shown how the addition of these two legs greatly extends the usefulness of the
3C-PAC when functions involving four or more variables are involved.

Cc 0O M P U T E R C O N T R O L Cc O Mm P A N Y I N C

5. Pulse Techniques and Time Sequence

The discussion of symbolic logic in the preceding sections has not been limited to any
They could very well be d-c voltage signals of
Many logical manipulations

particular type of ''true' or 'false"
positive or negative polarity to represent assertion or negation.
and computations, however, must be performed at very high speed to be useful.

signals.

The 3C-PAC

Gating Package of Fig. 6 has thus been designed to operate on pulses having a one-megacycle

repetition rate.
assertion lead; false, or negation,

negation lead.

Truth, or assertion,

is represented by the presence of a positive pulse on the
is represented by the presence of a negative pulse on the

In operation, synchronized pulse trains enter the gate legs, and pass through the gates

and buffer to provide a resultant output pulse train.
microsecond.

One such pulse operation is performed each

The result of this operation is carried over for use during the next pulse period.

The one-pulse-period delay is used to perform this carry-over function, and aids in the syn-

chronization of pulse signals.

It will be shown in later sections how the use of ""serial’ or

"parallel" methods of instrumentation affect the time sequence of the different pulse operations.
It should also be noted that accessory delay equipment is available for use with 3C-PACs when
it is desired to hold an output pulse train for greater than one pulse period.

6. Binary Arithmetic

In logical analyses, the ''pulse no-pulse'' conditions handled by the 3C-PAC Gating Pack-
age can serve to determine the ''true'' or "'false' of complex logical reasoning. These two
physical "pulse no-pulse'' conditions are also well suited to binary digital computation.

Fig. 8. Decimal and binary number systems.
hundreds tens units eights fours twos units
102 10t 10" 2” 2? 2! 20
8 7 3 9 = 1 0 0 1
873 = 8 x 10% 47 x 101 |+ 3 x 100 9 = 1x2% |+0x2% [+0x2l |+1x2Y
Decimal Binary

The basis for both decimal and binary number systems is shown in Fig. 8.

number system is built up from powers of 10.
is built up from powers of 2.
binary numbers is illustrated below with the number 011100.
the 1 is doubled to equal 2 if the next digit is an 0.
dabbled i.e., doubled plus 1 to equal 3.
as follows:

two digits 1 and O,

order 1

The binary number system,
The "double or dabble' method of evaluating
starting with 1 at the highest
If the next d1g1t is a 1,
This process is repeated with the accumulated total

The decimal

consisting of only

the 1 is

0 1 1 1 0 0 = 28
1 (1x2)+1 (3x2)+1 (7x2) (14x2)
+ 3 7 14 28
dabble dabble double double
7=
C 0O M u T E C 0O N T 0 L C O M P A N Y i N C

ry g

Binary addition and subtraction follow the simple rules set forth in Fig. 9. Binary addi-
tion and subtraction are also illustrated in this figure. As might be expected, it is necessary
to "carry' and ""borrow'' in binary addition and subtraction in essentially the same manner as
in decimal addition and subtraction.

Fig. 9. Addition and subtraction of binary numbers.

Addition Subtraction
Rules: 0 0 1 1 Rules: 0 1 1 0 and
+0 +1 +0 +1 carry 1 -0 -0 -1 -1 borrow 1
_— — — — to next — — — —
from next
column column
Sample: Sample:
0111=0+4+2+1= 17 011101= 0+16+8+4+0+1= 29
0100=0+4+0+0=+4 -010101=-0-16-0-4-0-1-=-21
1011=8+0+2+1= 11 001000= 0+ 0+8+0+0+0-= 8

7. Binary Addition - Serial Method

The most common method for performing binary addition is called the serial method.
By this method, two binary numbers such as 29 and 21, illustrated in Fig. 10, are added by
commencing with the right-hand column and progressing to the left, carrying a 1 to the next
higher column when a (1 + 1) addition is indicated. The two numbers A and B can be thought
of as two pulse trains entering an adding device. The 0's represent no pulse and the 1's rep-
resent a pulse. The pulse trains A and B are synchronized so that corresponding columns
enter the adding network precisely—at successive pulse periods. Using 3C~-PACs, these two
numbers ""march' into the adder at the rate of one column per microsecond. As will be shown,
the adding device must merely be a digital network arranged to perform the addition table de-
fined in Fig. 9.

A '"carrying' circuit supplies a third pulse input C. The 'carry' signals are fed back
from the output through the one-pulse-period delay. The_"carry” digit is thus added to the
next higher-order column, and is indicated with a ""prime", as C', to show that it is gener-
ated one-pulse-period earlier than the A and B inputs. Figure 10 shows how the two digital
numbers A and B are added in six pulse_perioﬁs.

Serial Addition Implementation: Defining the following variables

= Incoming binary digit of augend
Incoming binary digit of addend
Carry digit determined by addition performed one-pulse-period earlier
Sum digit of column being added

n QW
i

Two logical expressions can be written to represent the carry and sum functions:

C=(A-B-C')v(A-B-C)v(A- B -CYv(a - -B-C"
S=(A-B-C)v(A-B-Chv(aA-B -C)v(a-B-C"

c oM P U T E R C 0O N T R O L c 0O M P A N Y I N C

“‘L/IJ/‘/
=
A =29 = 0011101A A 001] L
B - 21 = 0010101 B 001 6010 _
+ - S 0
1
c' 0 carry C' 1
——O——J
delay
1) 1st pulse period prior to addition 5) 4th pulse period
00 10
A 11 1 A 00 - 1
B 001010 1 0 s B 00 - 1 10010)
o 1 carry o 1
0 1 ‘
2) addition of 1st column - 1lst pulse 6) 5th pulse period
period
0011
A 111 0 A 0
0010
B 00101 o 10 - B - 0 11 1) s
c' c' 0‘ t
1 1
3) 2nd pulse period 7) 6th pulse period
A 0011 A
- 1 - 0
B 0010 010 B 0110010
-— 1 — S 0 -5
! 1 ! 0
Ty
7

8) addition

4) 3rd pulse period
completed

32 +16+0+042+0=250

Fig. 10. Steps in serial binary addition.

Set up in the form of logic charts, the Carry and Sum functions appear as shown in Fig. 11.

These adding functions are easily implemented using two 3C-PAC Gating Packages, intercon-
nected as shown in Fig. 11.

Cc 0 M P U T E R Cc 0N T R O L C 0O M P A N Y I N C

—— e

e
o

;; LSS

C
A

Fig. 11. Logic charts and 3C-PAC connections for serial binary addition.

8. Binary Addition - Parallel Method

The serial method of addition requires as many pulse periods of time as there are col-

umns of digits to be added. If a faster addition is required, the parallel method may be used.

This method is shown in Fig. 12. The parallel method, however, requires as many sets of

Carry and Sum 3C-PACs as there are columns to be added. The two numbers to be added en-

ter the parallel adding system of Fig. 12 repeatedly for as many pulse periods as there are

carries. The correct Sum will then appear as shown. The parallel addition system of Fig. 12
! can be implemented with twelve 3C~PAC Gating Packages. Signal leads of Carry and Sum
packages are interconnected in the same manner shown in Fig. 11.

9. Binary Subtraction - Serial Method

Binary subtraction is performed as shown in Fig. 9 From the definitions

A = Incoming binary digit of minuend

B = Incoming binary digit of subtrahend

C'= Borrow digit determined by subtraction of preceding column
D = Difference digit of column being subtracted

~10-

C 0O M P U T E R C O NT R O L C oM P A N Y I N C

the following logical expressions for the Borrow and Difference functions can be written

Cc =(&-B-Cc)v@& -B.-C)v@A.-B-Cc)v(a -B-C)
D=(A-B-C)v(A-B-C)v(A-B-C)Yv(a- B-C)

The logic charts for the serial method of binary subtraction are shown in Fig. 13. These Bor-
row and Difference functions can be implemented with two 3C-PAC Gating Packages intercon-

nected as shown in Fig. 13.
0 1 1 1 1
ey ey ey 1 |
! ! ! ! !

Carry
Pkgs.
l Carry = 1 Carry =1 Carry =0 Carry =1
0 1 1 1 1
01 l‘l 0 1—1 1
0 1 1 1 0
Sum +0 +1 +0 +1 +0 1
Pkgs. | 41 +1 +1 +0 +1 +1
1 1 0 0 1 0
(50)
Fig. 12. Parallel method of binary addition.

10. Serial Adder-Subtracter with 3C-PACs

For the utmost flexibility in binary computation, both addition and subtraction can be
performed with three 3C-PACs, connected as shown in Fig. 14. An additional add-subtract
command function X is required. This is in the form of a pulse train which causes addition to
be performed when a pulse is present, and subtraction when a pulse is absent. The variables
required for the serial adder-subtracter are

A = augend or minuend

B = addend or subtrahend

C = carry or borrow (delayed from preceding pulse period)
X = add command

X = subtract command

D = difference

fi=(X-A)v (-}E' Z.) computing function

Using these variables, the serial adder-subtracter of Fig. 14 can be achieved with 3C-PACs.
-11-

u T E R C 0O N T R O L C 0O M P A N Y I N C

AB 0

00

01

11

10

AB

00

01

P

os]l

=
e

>
Wl

T w

C

Ay

Fig. 13 Logic charts and 3C~PAC connections for serial binary subtraction.

XA XA

Computing function

f; =(X-) v(X-A)

Fig. 14.

c oM P UT E R

T_1t —_r=t

AB A'B

st o]

Ql

7

Carry or Borrow

SvD

Sum or Difference

Combined serial adder-subtracter with 3C-PACs.

c 0O

N

T

R

~12-

0O L

C

11. Four-Variable Functions with 3C-PACs

The logic chart for a four-variable function is shown in Fig. 15. On this chart all
possible functions of four variables can be defined. There are 65,536 such combinations,
51, 358 of which can be implemented by a single 3C~-PAC. To implement a separate square
of this chart would require one 4-leg gate. Implementing all squares separately would thus
require sixteen such gates. To lessen the number of gates required, however, it is possible
to represent '"blocks ' of adjacent squares with a single gate. In defining such blocks, the
first and last columns of the chart and the top and bottom rows can be considered adjacent.

C
0 0 1 1 D

A B
0 0 1 2 3 4
Basic
4-variable 0 1 > 6 7 8
logic chart 1 14{ 9 [10] 11| 12
1 04} 13| 14 15} 16

Example 1: fj =(A"B"C)v(A-B'D)v(A-C-D)v(B D)

A C
0 ! 0 < 3 10, 11, 14, 15
0 1 D sSquares , , ,
A
0 0 B D
0 1 Squares 7, 8, 11, 12
11 ;
A D
10
Squares 11, 12, 15, 16
Example 2: fg = A-B-C v [A-B]'[(C-D)v(C'D)] v A-B-C-D
CBD
g é i g)](; Squares 3 and 15
A B _
0 0 2 4 ABC
0 1|5 6 7 8 Squares 9 and 12 .g%
1 1f T
ABCD
1 0
Square 1

&

Fig. 15. Four-variable logic chart and implementation with 3C-PAC gates.

~13-

=
(@]

Cc oM P UTE R C O N T R O L Cc 0O mMm P A N Y |

If shaded or unshaded squares are grouped together they can be implemented as
follows:

(a) Eight adjacent squares forming a 2 x 4 rectangle can be represented by a 1-leg
gate.

(b) Four adjacent squares forming either a 2 x 2 or a 4 x 1 rectangle can be repre-
sented by a 2~leg gate.

(c) Two adjacent squares sharing the same row or column can be represented by a
3-leg gate.

(d) Remaining single squares require a 4-leg gate for representation.

As described in previous sections, either the true (shaded) or false (unshaded) squares can be
instrumented with 3C-PACs, depending upon which is the more convenient or lesser in num-
ber. If the unshaded false squares are represented, it must be remembered to reverse the
output polarity of the 3C-PAC.

Examples of using the 3C-PAC for four-variable logical functions are shown in Fig. 15.
Example 1 is best implemented as three sets of 2 x 2 squares. As shown, these require only
three 2-leg gates. Thus the four-variable function of Example 1 can be implemented by a
single 3C-PAC, using only three of the gates.

Example 2 of Fig. 15 can be implemented as two sets of two adjacent squares (2 x 1)
and one single square. This complex four-variable function thus requires only three of the
3C-PAC gates, and shows how the provision of 4-leg gates increases the flexibility of the
3C-PAC.

Decimal Binary
21 1011 = 11 000110 = 6
x 14 x101 = 5 7= 111101010 = 42
21 to1r (1)111
21 + 0000 11
Toal 1011 1
21 1011l - 55 0000
) 0000
21
294
Fig. 16. Decimal and binary multiplication Fig. 17. Binary division by the conventional
by register shifting and addition. method of trial multiplication and
subtraction.

12. Multiplication, Division, Function Generation, Calculus Operations

Nearly all other mathematical operations can be reduced basically to addition and
subtraction operations, and implemented with 3C-PACs as described previously. Accessory
operations may be required, such as register shifting discussed in Section 13.

—14-

c oM P U T E R Cc 0N T R O L Cc 0O M P A N Y I N C

In Fig. 16, the multiplication of decimal and binary numbers by register shifting and
addition is depicted. Binary division by the conventional method of trial multiplication (or
addition) and subtraction is shown in Fig. 17. Such step-by-step computing programs are
easily implemented with 3C-PACs and appropriate pulse delays.

Function generation is performed by implementing an algebraic series expansion of
the desired relationship. Integration and differentiation are handled by binary numerical
methods. These involve basic addition and subtraction operations, programmed by the logi-
cal interconnection of 3C-PACs.

13. Shift Registers

Registers serve as repositories for digital information. While storing such digital
information, it is often desired to shift the time sequence or relative space position of the
pulses. The functions of shift registers may thus include serial read-in and read-out,
parallel read-in and read-out, shifting of information to right or left, etc. These operations,
which can be performed with 3C-PACs, are used in parallel-to-serial and serial-to-parallel
code conversion, storage of information, binary arithmetic operations, conversion of pulse
information between low-speed and high-speed systems.

The variables involved in register shifting include

W = parallel read-in command
P = external information to be read-in

R, = nth bit of stored information
SR = shift right command
Sy, = shift left command

For serial read-in and read-out, the required shifting function is (SR- P) for one stage,
[Sgr- R(n+1)] for the ntf stage. For parallel read-in, the shifting function is (W - Pp); for par-
allel read-out, the output of each shifting stage is available to drive several gate inputs. For
shifting information to the right, the function [Sgr- R(n-1)] is used; for shifting to the left,
1S1,* R(n+1)] is used.

The gates of a typical shift register stage are wired as shown in Fig. 18. The fourth

gate (Rp - W- 5[, - Sg) causes the information to circulate and be stored, or "memorized", until
it is desired to replace it with new information.

SR R(n+l) ST, R(n-1) RnW 51, _S_R

P o O

Fig. 18. Typical stage of a binary digital shift register.

Other uses for 3C-PACs include the translation of codes, such as the conversions of
teletype code to IBM code, Gray code to binary code, decimal code to binary code, etc. Fur-
ther reports by Computer Control engineers will discuss such utilization of these versatile
3C-PAC logical packages.

—15-

c oM P U T E R ¢ 0ON T R O L C 0O M P A N Y Il N C

	Scan-090319-0001.tif
	Scan-090319-0002.tif
	Scan-090319-0003.tif
	Scan-090319-0004.tif
	Scan-090319-0005.tif
	Scan-090319-0006.tif
	Scan-090319-0007.tif
	Scan-090319-0008.tif
	Scan-090319-0009.tif
	Scan-090319-0010.tif
	Scan-090319-0011.tif
	Scan-090319-0012.tif
	Scan-090319-0013.tif
	Scan-090319-0014.tif
	Scan-090319-0015.tif
	Scan-090319-0016.tif

