Symbolic Logic,
Boolean Algebra
and the
Design of
Digital Systems

FOREWORD

We sincerely hope that our many readers will find the contents of this manual helpful in ob-
taining an understanding of the fundamental prineiples of Symbolie Logic and the application
of these principles to the design of digital systems.

COMPUTER CONTROL COMPANY wishes to express its gratitude to the members of
its technical staff for their many contributions which were compiled and combined into the
manuseript of which this publication is the end result:

Copyright 1958, Compuler Control Co., Ine., Framingham, Muass., U.8. A.

TABLE OF
CONTENTS

SYMBOLIC LOGIC

Introduction

Historical

Number Systems

Binary Number System

Boolean Algebra

Binary Variables

Combinations of Binary Variables
Functions of Binary Variables
Graphieal Methods of Presentation .
General Theorem

DeMorgan’s Theorem .
Minimization

PRACTICAL APPLICATIONS

Implementing the Negation of a Function .

Flip-Flop

Binary Flip-Flop :
Set-Reset and Binary th-Flop .
Binary Counter .
Forward-Backward Counter .
Specialized Binary Counter
Binary Adder

Binary Subtracter .

Serial Unity Adder .

Serial Unity Subtracter

Serial Adder-Subtracter
1-Megacycle Shift Register

Serial Comparators

Serial Gray Code to Binary Code Converter

Pulse Pattern Generators .

ABOUT 3C

History .

Systems .

Produects .
Availability of 3C Semces

=1 =3 =3 &1 gr oo 1 O W N B DD

13
14
14
14
15
17
18
19
20
20
21

22
24

30
32
33

Symbolic L.ogic

INTRODUCTION

This publication represents an attempt to pre-
sent in a clear and understandable form the funda-
mentals of Symbolie Logic as applied to the logical
design of digital systems. COMPUTER CON-
TROL COMPANY, Inc., utilizes the techniques
of Symbolie Logic continuously in the design of its
digital products and systems. It is the intention of
this section to make this knowledge available in a
single coherent presentation so that others in our
industry may benefit similarly. We hope the
readers will endeavor to let us know whether or not
we have succeeded.

HISTORICAL

The first clear notion of a system of mathe-
matical logic was formulated by the German
mathematician, Leibniz. The first concrete con-
tributions to the achievement of a systematized
logic were made by Augustus de Morgan (1806-
1876) and George Boole (1815-1864). The entire
later evolution may be said to stem from Boole’s
monumental contribution titled, An Investigation
of the Laws of Thought on which are Founded the
Mathematical Theories of Logic and Probabilities.
This was published in 1854 but was overlooked as
an interesting academic novelty for a great many
years. Recognition as a mathematical masterpiece
finally came from Whitehead and Russell in their
Principia Mathematica (1910-1913). In 1928 a
classic text on the subject titled, Mathematical
Logic by Hilbert and Ackerman was published in
German and later in English.

The object of Symbolic Logic was to provide an
instrument of exact, analytical, constructive

thought; i.e., to effect a means of avoiding the
pitfalls of semanties in language. As a subject in
a university curriculum, it is presented by the
philosophy department quite as often as by the
mathematics department because of its involve-
ment with language and semanties. However, like
all other discoveries in pure science, it was only a
matter of time for an expanding technology to find
a practical engineering use for this new knowledge.
The date which marks the beginning of this new
period is generally recognized to be 1938 when
Dr. Claude E. Shannon of the Bell Telephone
Laboratories published his paper titled, A Sym-
bolic Analysis of Relay and Switching Circuits.
The past decade has seen the widespread applica-
tion of digital computers, data-processing systems,
automatic control systems, and other types of
digital equipments towards the needs of scientific
and industrial progress. The design and develop-
ment of these modern systems of tremendous com-
plexity have caused Symbolic Logic to become a
vital area of knowledge to the digital systems de-
signer. He is always concerned with the minimiza-
tion or simplification of the amount of equipment
required to perform a given function. Symbolie
Logic provides the means for rigorously attacking
this problem. There is more to be said on the sub-
ject of minimization and a later section will return
to this most important topie.

NUMBER SYSTEMS

An important adjunet to an understanding of
the fundamentals of Symbolic Logic is a knowl-
edge of the binary number system. This will be

reviewed only briefly here in view of the prev-
alence of knowledge on this topic among digital
engineers and systems designers.

In some prehistoric age, early man learned to
count by becoming aware of a one-to-one correla-
tion between his possessions of one sort or another
and his fingers. Conceivably this may have re-
sulted from an attempt to communicate to his
neighbors quantitative information for bartering
purposes. In any event the coneepts of magnitude
and quantity were developed when man learned to
count with his fingers. And because he had ten
fingers the decimal number system has been in use
ever since.

Our method of writing a number using Arabie
numeral symbols to indicate a quantity or magni-
tude is actually a shorthand.

for example:

796 is shorthand for 7 X 100 +9 X 10 + 6 X 1,
which may also be written as 7 X 102 + 9 X
10t + 6 X 100,

It is obvious that any decimal number can be
expressed in this manner. On further refiection it
can be seen that the ascending powers of 10 repre-
sent a sophisticated solution to early man’s prob-
lem of keeping track of the number of ten counts
he had made on his fingers when he became in-
volved with large quantities. The modern Theory
of Numbers gives the term “radix’’ to this base 10
of our decimal number system and calls the digits
0 through 9 “coefficients”. It also shows that
number systems can be devised using any other
base or radix. In general, the number of coeffi-
cients required is equal to the value of the radix
if the number system is to be eapable of expressing
all quantities in a non-redundant manner.

BINARY NUMBER SYSTEM

The binary number system uses the radix 2. It
has two coefficients, therefore, 0 and 1. It is the
number system which might have been adopted if
our early ancestors possessed one finger on each
hand instead of five. Any quantity or magnitude
which can be expressed decimally can also be
expressed in binary form.

for example:

17 decimal = 1 X 10! 4 7 x 10°

17 written in binary = 10001

which is shorthand for . . .

1X2040X284+0X224+0Xx21+1 %20
which adds up to 17 as we commonly know it.

It can be seen that a sort of transformation has
been achieved. Any quantity or magnitude ean be

represented equally well by either system or by all
other conceivable systems for that matter. But the
decimal system requires knowledge or memory of
ten different coefficients while the binary system
involves only two. However, it requires many more
of these two binary coefficients in appropriate com-
bination to represent a given magnitude than it
does to represent the same magnitude using deci-
mal coefficients. The human mind has no difficulty
in memorizing and learning to manipulate the ten
coefficients 0 to 9 and so the decimal system works
out well and saves us considerable inconvenience
as compared to systems with a smaller base. How-
ever in electrical or electronic equipment using
relays, vacuum tubes, magnetic cores, transistors,
ete., it is both difficult and uneconomical to design
and manufacture circuits which have ten discrete,
stable, and easily controllable states due to toler-
ance problems, state of the component art, ete.
Therefore the majority of our digital machines do
not operate directly in the same decimal number
system that we ourselves prefer. It is not difficult
and it is economically feasible to design bistable
circuits which are efficient and reliable. Accord-
ingly most of our modern computers perform their
internal arithmetic operations using the binary
number system. However even if this were not the
situation; as for example in the case of digital
equipments which do not perform arithmetic op-
erations; a knowledge of the binary number sys-
tem and binary arithmetic provides a valuable aid
to the understanding and appreciation of the
capabilities of Symbolic Logie. This is so because
our two-valued binary number system coefficients
possess a direct correspondence to the two-valued
or dyadic form of the basic elements of Symbolie
Logic which will be discussed in later sections.

NotE: The simplest number system is the unary system
(radix = 1, coefficient = 1) which we are all familiar
with and sometimes use to keep tallies . . .

for example:

1=1,2= 11,8 =illl,4 =111, 5= I3,
6 = I#1 1, etc.

BOOLEAN ALGEBRA

Symbolie Logic is often referred to as Boolean
algebra in commemoration of its prime originator.
It is significant also that it is called an algebra and
not a geometry or an arithmetie or anything else.
The significance lies in the structural resemblance
which it bears to the subject of algebra. This re-
semblance perhaps makes a comparison between
the two worthwhile for orientation purposes. A
further purpose of the following brief comparison
is that it illustrates the relative simplicity of
Symbolic Logic as compared to algebra.

ALGEBRA

1. Algebraic Variables

Letter symbols are used to represent dependent
and independent variables whose numerical
values ean range from plus infinity to minus
infinity; whose number form ean be real, imag-
inary, complex, rational, irrational, integral,
fractional, ete.

. Fundamental Operations
addition (4)

e=a+b

ete. in infinite variety.

subtraction (—)

c=a—b

—2
5

ete. in infinite variety.

Similarly for multiplication and division which,
however, can also be derived from the more
basic operations of addition and subtraction.

. Commutative and Associative Laws
a+b=b+a

a—b=-b+a
at+(b+ec)=(+b)+e
a(be) = (ab)e

SR MG AT ASNEEER I BN RO

LA R RN N N I R R R R A R R R R s e T

SYMBOLIC LOGIC

1. Binary variables

Letter symbols are used to represent dependent
or independent variables which are always
simply two-valued (dyadie, binary). They may
be expressed as one, zero; true, false; pulse, no
pulse; plus voltage, minus voltage; ete.

. Fundamental Operations

conjunction (symbol -)

¢ = a=b
ec=aandb

¢ is true only

when ‘a’ and ‘b’ are
both true
simultaneously.
True = 1, False = 0
no other possibilities
exist.

disjunction (symbol v)

c=avh
e=aorb

¢ is true whenever
either ‘a’ or ‘b’ are
true.

T =1 =0

negation

a=b

‘a’ is true if ‘b’ is
false; ‘a’ is false

if ‘b’ is true; ‘a’

is the negation of ‘b’

Other types of logical operations exist and are
found useful by the non-engineer logician. How-
ever these may always be derived from the three
above which are most readily implementable
by electronic means. Consequently, the digital
engineer is generally concerned only with the
above operations of conjunction, disjunection,
and negation.

. Commutative and Associative Laws

a*b=>b-a
avb =bva
a*(b-e)=(@-+hb)-c
av(bve) = (avb)ve

Figure 1 Comparison of Algebra vs Symbalic Logic

BINARY VARIABLES

As stated in the previous comparison table, a
binary variable can vary between two and only
two values. It corresponds direetly to the “bit” of
information theory. The term “bit” is synonymous
with binary variable and gained popular usage in
the digital engineering field. The two values of a
binary variable are commonly represented as true,
false; one, zero; plus voltage, minus voltage; pulse,
absence of pulse; open relay contact, closed relay
contact; ete.

COMBINATIONS OF
BINARY VARIABLES

Since the binary variable can have only two
possible states, a finite number of binary variables
taken together must yield a finite number of pos-
sible combinations. For example if our binary
variable is represented by the position of a toggle
switch, two switches (representing two variables)
can result in only four possible combinations.
These are ON-ON, ON-OFF, OFF-ON, and OFF-
OFF. Three switches would give eight possible
combinations; four would give sixteen; ete. In
general the number of possible combinations can
be seen to be equal to 2® where n equals the num-
ber of switches; i.e., binary variables.

FUNCTIONS OF
BINARY VARIABLES

The concept of a funetion of binary variables is
somewhat more difficult to grasp and therefore
also, to explain. It might be stated simply as a
particular grouping or combination of combina-
tions of binary variables. To carry our switch-
position analogy further, let us assume three
binary variables represented by the three switches:
A, B, and C. There are eight possible configura-
tions of ON and OFF which could be set up on A,
B, and C. Representing ON by the numeral 1 and
OFF by the numeral 0, these may be tabulated
as in Fig. 2.

Some arbitrary action could be predicated solely
on the occurrence of any one of the eight possible
combinations of A, B, and C. The predicated
action could also be based on the oceurrence of
more than one combination. It could be initiated
by either combination 1 or combination 5; or by
any of combinations 3 or 4 or 7; or any combi-
nation except 8; ete. These combinations of com-
binations represent functions. There are a finite

number of possible functions of n variables. The
reader should satisfy himself that in general the
number of combinations = 2" where n = the num-
ber og variables and that the number of funetions
= 22

‘E_’-?;-j;-;,r&;;_-;ﬁ.;.:__ A= LoMERrEe it) Sy
= Combination A B C

k. 1 o 0 o

2 0o 0 1

= 3 o 1 o0

L

b 4 o 1 1

v 5 1 0 O !
3 6 1 o0 1

-y

S 7 1 1 0

-

8 1 1 1

- L I'.'
SR |

Figure 2 Combinations of Three Binary Variables

GRAPHICAL METHODS
OF PRESENTATION

In keeping with the truism that a picture is
worth a very large number of words, the tendency
has been to devise a diagrammatic approach to
the presentation of combinations and functions of
binary variables. The first such diagrams were
created by a 19th century mathematician, John
Venn, and are called Venn diagrams. The modern
approach comprises a rectangular chart called a
“Truth Table” which could be deseribed asa Venn
diagram recreated in Cartesian coordinates. Fig. 3
illustrates the complete case for all functions of
two variables using logical equations, electronic
symbols for implementation, Venn diagrams, and
truth tables.

LOGICAL VENN TRUTH ELECTRONJC
EQUATION DIAGRAM TABLE IMPLEMENTATION
C=1(A,B) C=f{(A, B) C=1(A, B) C=1f(A, B)

Fo A1
To A c
C=A T_l o———=—d
A c
C=A °_®_°
I = inverter

C=B

cC=RB

(E AN NN ENERE R RN RS RN RN EENNEN SRR EEE RN NEERENRNENENE:RS]

LOGICAL VENN TRUTH ELECTRONIC
EQUATION DIAGRAM TABLE IMPLEMENTATION
C=1(A, B) C=1(A, B) C=1(A B) C=1(A, B)

‘A
—_—
—]
SYMBOL FOR
OR GATE
OR BUFFER
C=AvB
A
C=AvB B_;I—-C
A
C=AvB E '——'C

 E R R R R R R E R s s e vy vy vy vy e e R R R R R A R R R R R R R R R R R A R A R R A R R AR R A

LOGICAL VENN TRUTH ELECTRONIC
EQUATION DIAGRAM TABLE IMPLEMENTATION
C=1{(A, B) C=1(A, B) C=1(A, B) C=1f(A, B)

C=A-B c
MBOL FOR
TWO INPUT
AND GATE
C=A-B
C=A-B
C=A:-B

L EEE NN EEEE RN R RN RN NN RN NN NN EE N R RN R RN NN NN

LOGICAL VENN TRUTH ELECTRONIC
EQUATION DIAGRAM TABLE IMPLEMENTATION
C=1(A, B) C=f(A, B) C=1(A, B) Cc=1(A, B)

A
C=(A-B)v ® I
(A-B) A
C=(A-B)v
(A-B)

cC=0

c=1

Figure 3 Functions of Two Binary Yariables

GENERAL THEOREM

Any binary function may be expressed as a dis-
Junctive combination of conjunctions. Electronically
speaking, this means that the funetion may be
represented by a group of AND gates or conjunc-
tions whose outputs are buffered together into an
OR configuration. Conversely, any function may
also be expressed as a conjunctive combination of dis-
Jumctions which is implementable by a group of
OR gates (buffers) whose outputs feed into an
AND gate. Minimization of any given funetion
from its truth table will lead to either of these two
general forms, as desired. If the funection is to be
implemented by means of germanium diode gating
struetures, this attribute of the truth table is a
very advantageous one since it leads to only two
levels of gating structure and sinece the not quite
“ideal” characteristics of the diodes make it
mandatory to minimize the number of cascaded
gates.

De MORGAN'S THEOREM

Another useful rule to the logical designer is
DeMorgan’s Theorem which states that any binary
expression is equal to the negation of the expression
obtained by changing all conjunctions to dis-
junctions and vice-versa and by . replacing each
variable with its negation.

some examples:
AVB-4-B
A-B=AvEB

(A-B):[BVCV(D-E)]=(AvB)v[B -C - (DVE)]

Three variable chart for
f=A-B-CvA-B-CvA-B-CvA-B-C

MINIMIZATION

As previously mentioned, the designer of digital
equipments is inevitably concerned with the need
to obtain the simplest, most direct implementa-
tion of his logical funections. Minimization of
equipment results in maximization of economy and
of reliability, all else being equal. Of the various
methods devised to obtain the minimization of
binary funetions, the truth table or echart method
has achieved the most widespread aceeptance be-
cause of its relative ease of usage and because it
provides a visualization of the function that makes
its characteristics more readily perceivable. The
truth tables for all sixteen functions of two vari-
ables have already been listed. Fig. 4 illustrates
the layout of the truth tables for functions of
three and four variables.

In similar fashion charts for five, six, seven, and
even eight variables can be created. Note that a
three variable chart has eight squares, a four vari-
able chart has sixteen squares, and that an n
variable chart will have 2" squares. Also note that
the tabular listing of the eoordinate values of the
variables is done in a “reflected’” sequence rather
than a straight binary sequence such that only one
variable at a time changes state between any two
adjacent coordinates. This is done to facilitate
determination of redundant variables in the con-
junctive terms by quick inspection. Its need will
beeome obvious from consideration of the follow-
ing steps to be pursued in achieving the minimiza-
tion of binary functions.

Figure 4 Three and Four Variable Truth Tables
(squares are numbered for discussion purposes)

Four variable chart for

f=A-B-Cv{[A-B]-[(C-D)v(C-D)}VvA-B-C-D

Step 1. Create the chart with the appropriate
number of squares in accordance with the number
of variables involved and with the variable co-
ordinates in reflected sequence.

Step 2. (Algebraic Approach). Shade in the appro-
priate squares to completely represent the given
function. This is perhaps the most difficult step in
the procedure. It is straightforward if the function
is already in the form of disjunctively connected
conjuncts. If it is in the form of conjunctively con-
nected disjuncts, DeMorgan’s Theorem can be
used to effect the reversal. If the function is not in
a neat and symmetrical form, then it can be ex-
panded by means of the commutative, associative,
and distributive laws. Also the expansion of the
function may be expedited by manipulations
based on the following simple relationships:

AvA = always true
A - A = always false

A-A=A The validity of these
AvA =A minimizations may be
Av(A-B)=A established by means of
A-(AvB) =A the two variable chart.

Av(A-B)=AvB
A-(AvB)=A"'B

In the examples of Fig. 4 the charting of the two
functions proceeded as follows:

Figure 5 Chart Shading for f = (A+B) v (B =T) Using Graphical Approach

Chart for:
(A-B)

hree Variable Chart:

- C shaded square No. 3
- C shaded square No. 2
- C shaded square No. 4
- C shaded square No. 6

Four Variable Chart:

A - B - C shaded squares No. 9 and 12,

[A - B] - [(C - D)V (C_- D)] were expanded to:
(A-B-C-D)v(A-B-C :D) and shaded
squares No. 1 and 3, and A - B - C + D shaded
square No. 15.

ALTERNATE AND PREFERABLE STEP 2
(Graphical Approach)

o
o b9 b

Again the requirement of Step 2 is to shade in
the appropriate squares to completely represent the
given function. The advantage of the graphical ap-
proach is that common sense is substituted for
knowledge of the logical algebraic manipulations
in shading in the functions. Chart manipulation
replaces algebraic manipulation in accomplishing
the identical results correctly and easily. For ex-
ample, if a term in the expression to be displayed
is (A - B), shade in all squares that have A = 1
and B = 1 as coordinates. If the term is AV B,
shade in all squares that have A = 1or B =1 as
coordinates. Do this on separate charts (or on the
same chart in different colors) for all single terms
and then in similar fashion combine charts (or
colors) to get the final unique table for the fune-
tion.

Application of step 3 to the chart which has just
been derived will show that fs = Bv (A - C)

Chart for complete function:
fi=(A-B)v(B-0)

art for: Chart for:
(BvC) f,=(AvB)- (BvC)

Figure 6 Chart Shading for f = (A vB)s(Bv C) Using Graphical Approach

Chart for:
fy=(A-B)v[A-(BvC)

Figure 7 Chart Shading for f = (A« B) v [A» (B vC)] Using Graphical Approach

Step 3 will be described first for functions of four
variables but the same general technique applies
to all other cases.

The brute force implementation of the funetion
requires an AND gate for each square of the chart
and as many inputs to each gate as there are vari-
ables in the expression. This form of the funetion
was derived in order to shade the chart squares
and does not represent any simplification. The
simplification or minimization is achieved by in-
specting the chart for shaded large squares or
rectangles comprised of the individual shaded
squares such that all of the individual squares are
shaded and such that the number of individual
squares comprising the larger shaded square or
rectangle is one, two, four, or eight. The two out-
side columns of the chart are considered to be con-
tiguous for purposes of this inspection. Similarly,
the top and bottom rows of the chart are also con-
sudered to be contiguous to each other.

Item 1 Eight adjacent squares forming a 2 X 4
rectangle can be represented by a “one-leg” gate
(i.e. 2 direct input to the 2nd level buffer).

Item 2 Four adjacent squares forming either a
2 X 2 or a4 X 1 rectangle can be represented by
a “two-leg” gate.

Figure 8
o
F
&
% From:
& A N
|
. 5.
SN
),
C —
D—_.- -

o0 m>»

Item 3 Two adjacent squares sharing the same
row or column can be represented by a “three-leg”
gate.

Item 4 Remaining single squares each require a
“four-leg” gate for representation.

The validity of the statements of Items 1-4
above should be clearly established by the reader
to his complete satisfaction before proceeding.
Inspection of the shaded areas will indicate that
the specified number of gate legs conform to those
coordinate variables whose values are constant for
the entire area under consideration.

For the specific case of the four variable chart
of Fig. 4 it may be seen that:

Square 9 is “adjacent” to Square 12 and yields

A-B:C.

Square 3 is “adjacent” to Square 15 and yields
B-C-D.

Square 1 stands alone and requires A - B - C - D.
therefore, f = A - B - Cv}(A - B] - [(C - D) v
(C -D)]" VA - B - C + D has been minimized to
f=A-B-CvB:C-DvA-B:C:D and the
implementation has been reduced as indicated
in Fig. 8.

LT

Step 8 Example for the case of three variables:

The function f = (A-B-C)v(A-B-C)v (A -B-
C)v (A-B-C) of Fig. 4 is already in the desired form
for entry in the chart.

A - B - C shades square No. 3.

A - B - C shades square No. 2.

A - B - C shades square No. 4.

A - B - C shades square No. 6.

There is no 2 X 2 or 4 X 1 shaded area which
would require a “one-leg” (direct input) gate. The
choice exists between a 2 X 1 area and two sep-
arate shaded squares or three 2 X 1 shaded areas
which all have square No. 4 in common. Either
choice will require three gates but use of the com-
mon square No. 4 eliminates one leg on each of the
two gates and is therefore preferable.

Therefore:
squares 3 and 4 yield A - B.
squares 2 and 4 yield A - C.
squares 6 and 4 yield B - C.

ol m »
L]
S

O o i

o

—N
1
TN
)
—N
[/

O m »

and so the function minimizes to:
f=(A-B)v(A:-C)v(B-C)

and implementation reduces to the form shown in

Fig. 9.

Use of the overlap on Square 4 means physically
that the occurrence of inputs A - B - C will result
in an output from each of the three gates in the
minimized implementation, but since the three
outputs occur simultaneously and are buffered to-
gether, the actual output signal of the logical gat-
ing structure is unaffected.

Step 3 for funetions of five or more variables:

Five variables are graphed on a three variable
by two variable coordinate chart. The situation
becomes immediately more difficult although still
very manageable. In praetice, functions of up to
eight or more variables are successfully minimized
using the chart method. Functions of higher num-
bers of variables rarely occur and when they do,
can be handled by breaking them up into two or
more diserete funetions of lesser numbers of
variables.

Figure 9

11

12

The increased difficulty with five or more vari-
ables stems from the fact that a multiplicity of
reflected sequences exist for the coordinate values.
Consider the case of a three variable reflected co-
ordinate sequence:

A B ¢

0 0 0

0 0

0 1 1

0 1 0

1 1 0 so reflective

: | 1 1 ete
1 0 1 also reflective

1 0

This means that consideration of adjacent
shaded squares is inadequate. Other shaded
squares might exist which also could have been
adjacent depending on the sequence selected but
are prevented from being so by limitations stem-
ming from the two-dimensional aspects of the
chart. Careful inspection of the chart will still yield
the proper results nevertheless. Also reference to
the literature on the subject will disclose the exist-
ence of various aids and techniques to assist in
making the minimization a routine procedure.
These should be consulted when complete famili-
arity has been achieved for the cases of two, three,
and four variables.

Practical Applications

The following usage examples are based upon the
Series T family of 8C-PACs (or T-PACs) which
are described in detail in COMPUTER CON-
TROL COMPANY’s Catalog T. (The reader is
strongly urged to familiarize himself with the opera-
tion of COMPUTER CONTROL COMPANY’s
T-PACs by referring to Catalog T as an aid in
understanding the examples contained in the follow-
ing sections.)

Figure 10 Logical Representation of T-PAC LOGICAL ELEMENT, Model LE-10

The two level gating configuration of the Model
LE-10 T-PAC is the result of careful consideration
of the principles which have been described in the
preceding sections. It was chosen as being the
optimum configuration for the implementation of
three, four, and five variable binary functions and
as being most permissive to the direct minimiza-
tion of these functions.

T-BLOC®
3C-PAC®

T & i TR e SR

L)

A 1 microsec delay '[-"
= —— oo
4A Assertion f
O———— -
1 4 Leg Buffer 3
2—
3 ——--? N]
4 \ f Transistor |£
4-4 Leg < B) Ampli s
Gates mplifier
e 9 £
= :
3 — o
4 i
1 MC Clock i
CoO——— 1 microsec delay %
1 n =
2 D Negation E
I —* £
_4 " {1
Bo- Inhibit %

IMPLEMENTING THE NEGATION
OF A FUNCTION

Because the LE-10 T-PAC has assertion and
negation outputs either the shaded or the unshaded
squares of the truth table may be implemented in
accordance with whichever requires the least num-
ber of inputs. If the unshaded squares (the nega-
tion of the function) are implemented then the
negation output of the T-PAC provides the re-
quired function. Consider the function desecribed
by the following truth table:

Figure 11

Writing the three variable term for each shaded
square (sometimes called the disjunctive normal
form) the function is:

1 2 a

G e e i
f=A-B-CvA-B-CvA-B-Cv

4 b] 8
B e T e
A-B-CvA-B:-CvA:-B:-CvA:-B:C
in minimized form:

f=_KvaC NOTE:
A from squares 1, 2, 3, 4 Number above
B from squares 3, 4, 5, 6 m"‘:"uﬁ‘r
C from squares 2, 4, 6, 8 table of Fig. 11
however consider square 7:
f,=A-B-C

7=A-B-C=AvBvC =f,by
DeMorgan’s Theorem

Therefore square 7 could have been imple-
mented directly with the proviso that the negation

output of the package now must be used to obtain
the function.

FLIP-FLOP

The flip-flop, shown in Fig. 12, is a familiar
bistable element. The simplest form of a flip-flop
is one that is turned ON by applying a pulse S
(set pulse) and turned OFF by applying a pulse R
(reset pulse); i.e., once the flip-flop has been
turned on by the set pulse, it should remain on
(true) until it is turned off by the reset pulse. Con-
versely, it should remain off (false) until it is
turned on again by a set pulse.

Figure-12 Basic Flip-flop Connections in a T-PAC

Figure 13 Binary Flip-flop

If symbolie logic is employed, the expression for
this device is SV (R - F), where S is the set pulse,

13

14

F is the plus output of the flip-flop, R is the reset,
and R is used to mean “no reset pulse”. Hence, the
statement F = Sv (R - F) says that this device
shall have a true output after it receives a set pulse
and shall continue to have a true output until a
reset pulse is received. If the statement is ex-
amined, it can be seen that the S pulse creates the
true pulse F and that the term (R - F) maintains
this true state. Whenever an R pulse is received,
the latter term becomes false, causing the entire
statement to be false, hence turning off the device.
Thus, a flip-flop has been created. The flip-flop
connections used on a T-PAC are shown in Fig. 12.

BINARY FLIP-FLOP

A binary flip-flop, shown in Fig. 13, is a stable
device that changes state each time an input pulse
B is applied. The symbolic logic statement for this
is /= (B -F)v (B :F). The symbol F’, read
“F delayed one pulse period”, distinguishes the
output of a T-PAC from its inputs which occur one
microsecond earlier. The characteristic of a binary
flip-flop is that if it is off (F” false and F’ true), a
pulse B will turn it on (make F’ true). The flip-flop
will remain on (B - F true) until another pulse B
is received. Conversely, if the device is on (F' true
and F’ false), a pulse B will turn it off until an-
other pulse B is received.

SET-RESET AND BINARY FLIP-FLOP

An extension of the flip-flop and binary flip-
flop, shown in Fig. 14, is a bistable device that is
turned on by a set pulse, turned off by a reset
pulse, and has its state changed by the application

Figure 14 Set, Reset, and Binary Flip-flop

of the B pulse. The symbolic logic statement for
this is:
F=SvB-F)vB-R-F)
The appropriate connections are shown in
Fig. 14.
BINARY COUNTER

A binary counter, see Fig. 15, is an n-stage de-
viee that will aceept eount pulses and display the
binary version of the accumulated count. The
total capacity of this counter is (2" — 1).

Figure 15 Binary Counter

First Stage

Typical Stage

The first stage is a conventional binary flip-fiop.
Each of the other stages sense for a change of state
(1 to 0) of the preceding (low order) stage to de-
termine whether the higher-ordered stage should
change state. For example, a two-stage counter can
count from 0 to 3, where the binary representa-
tions of its contents are:

C B
0=0 0
1=0 1
2=1 0
8=11

The change of state in stage B that should serve
to change the state of stage C is the transition of
B from 1 to 0. This transition is recognized by
sensing the present output of stage B and its out-
put 1 pulse period earlier. When these two outputs
are 0 and 1, respectively, stage C should change
state. If the count pulse is labelled A, then the
statements for stage B and a typieal stage C are
as follows:

B=(A:-B)v(A.-B)
C=(C-B'-B)v(C-B)v(C:-B)
The last statement shows that if C is false (C is

true) and B changes from a 1 toa 0 (B’ and B is
true), the first quantity (C - B’ - B) is true, caus-

ing C to change state and become true. Similarly;
if C is true and we have B’ and B true, then the
circulation of C is disabled and C changes state
and becomes false. The T-PAC connections for the
binary counter are shown in Fig. 15.

T-PAC LOGICAL ELEMENT, Model LE-10

FORWARD-BACKWARD COUNTER

A forward-backward counter, shown in Fig. 16,
is a binary counter whose contents are increased
by 1 each time an add pulse A is applied, and de-
creased by 1 each time a subtraet pulse S is applied.
Each stage of the counter consists of two pack-
ages: a flip-flop to store a 0 or a 1 for the stage, and
a package to produce a carry or borrow pulse to
the next stage. The storage flip-flop in the first
stage (low-order stage) must change state upon
receipt of either an add pulse or a subtract pulse.
The storage flip-flop in any of the remaining stages
must change state upon the receipt of a ecarry or
borrow pulse from the preceding stage.

When adding, a carry pulse must be produced
from a stage when it is switched from 1 to 0. When
subtracting, a borrow pulse must be produced

from a stage wheu it is switehed from 0 to 1. The
carry and borrow pulses are derived in a single
package and delivered to the next stage as one
signal.

A typical stage in the counter (other than the
first) changes state each time a earry or a borrow
signal is received from the preceding stage. At the
time a carry or a borrow signal is received by a
particular stage, the carry-borrow package as-
sociated with that stage determines whether a
carry or a borrow signal should, in turn, be trans-
mitted to the next higher-order counter stage. This
carry or borrow decision is based on the states of
the storage flip-flops of the particular stage and its
preceding stage.

If the preceding stage is reset (0) at the time

15

16

At

Figure 16 Forward-Backward Counter

that this stage receives a carry or borrow pulse
from the preceding stage, then this carry or borrow
pulse is a carry pulse. If this stage is set (1) at the
time this carry pulse is received, the storage flip-
flop associated with this stage should be reset to 0
and a carry pulse transmitted on the carry-borrow
line to the next higher-order counter stage. If this
stage is reset (0) at the time this carry pulse is re-
ceived, then the storage flip-flop associated with
this stage is set and no carry pulse is transmitted
to the next stage.

If the preceding stage is set (1) at the time that
this stage receives a carry or borrow pulse from
the preceding stage, then this carry or borrow
pulse is a borrow pulse. If this stage is reset (0) at
the time that this borrow pulse is received, the
storage flip-flop associated with this stage should
be set to 1 and a borrow pulse transmitted to the

e———— I
e OO

L
g
R
——
f——
fg—

carry-borrow package of the next higher-order
counter stage. If this stage is set (1) at the time
that this borrow pulse is recieved, then the storage
flip-flop associated with this stage is reset and no
borrow pulse is transmitted to the next stage.

The T-PAC connections for the forward-
back-ward counter are shown in Fig. 16 where:

A = Add pulse

S = Subtract pulse

C = First stage storage

C. = First stage carry or borrow pulse

E = Typical stage storage

E. = Typical stage carry or borrow pulse

and D and D, are the storage and carry or borrow
pulse of the stage preceding stage E.

SPECIALIZED BINARY COUNTER

This particular binary counter, shown in Fig. 17,
has all stages responding simultaneously when its
contents are increased by 1 upon the application
of an input pulse A. This type of counter will pro-
vide the new accumulated count 1 microsecond
after the count pulse has been received. Each stage
is a binary flip-flop. The first stage (stage B)
changes state every time the count pulse is re-
ceived. The second stage (stage C) changes state
every time stage B is on and a count pulse is re-
ceived. The third stage (stage D) changesstateevery
time stage B and stage C are on and a count pulse is
received. In general, stage n changes state when-
ever all the preceding stages are on and a count
pulse is received. The eight consecutive states of a
three-stage binary counter verify this reasoning.

Figure 17 Three Stage Counter

0 = 000 b= 101
1:=1001 6 = 110
2:=010 Y= 110
3 =011 0 = 000
4 = 100

Letting,

A = The input count pulse

B = The first (low order) stage
C = The second stage

D = The third stage

the T-PAC connections for a three-stage counter
ufthmtypeareshowan‘lg 17. While a three-
stage counter of this type requires only three pack-
ages, it should be noted that, for speed, succeeding
stages require more than one package each.

17

18

in ﬁn Cn-1 J"in Bn En-l An BnCna An En En-l

BINARY ADDER

In binary arithmetie, the addition rules are:

A= 0 0 1 1
+B = 40 +1 +0 +1
Sum S= 0 1 1 Oecarrylto+1
next higher column.

Each column of a binary number corresponds to
a power of 2, instead of the familiar power of 10
used in decimal numbers. A sample addition of two
numbers shows the binary number system and also
a performance of the above rules.

sample:

= O IE= 0+4+2+4+1= {
+B = +1100 = 8+4+0+0=+12
"S= 10011=16+0+0+2+1= 19

Therefore, to secure the proper sum digit (S)
in a column, three quantities must be considered:
the binary digit A, the binary digit B, and the carry

An

C, = Carry to next column

Rn Bn cn-l An Bn En-! An Bn Cn-l An En Cn-l

LY

Figure 18 Logic Charts and Connectlons for a Binary Adder

digit C from the adjacent lower-ordered column.
The complete addition rules, encompassing these
three variables, can be briefly stated as follows.
Create a sum digit equal to 1 for this column when-
ever the total number of 1's present in the three
variables is an odd number. Create a carry digit
equal to 1 for the next higher-ordered column
whenever the total number of 1's present in the
three variables equals or is greater than two.

These addition rules are shown displayed on the
logic charts in Fig. 18 where the shaded combina-
tions are those combinations that result in a sum
digit or a earry digit equal to 1. Therefore, it re-
quires two packages (a sum package and carry
package) to add a column consisting of two binary
digits. The T-PAC connections for a binary adder
are shown in Fig. 18.

When the binary numbers are presented to the
adder in serial form, only two T-PACs are required
to accomplish the addition. This is due to the fact
that each column is added in sequence, and the

carry pulse is delayed 1 pulse period so that it plays
a role in the addition of the next eolumn.

When the binary numbers are presented to the
adder in parallel form, two T-PACs per ecolumn are

Xn Yn 0 1 Bn-l
0

0
1
1
D, = Difference

XoYnBna XnYnBna XuYnBna

BINARY SUBTRACTER

In binary arithmetic, the subtraction rules are:
X= 0 1 1 0
-Y=-0 -0 -1 -1
Difference D= 0 1 0 1 and borrow
1 from —1 next higher eolumn

sample:
X =1100 = 12
-Y =0111 = -7
D=0101= §

To secure the proper difference digit (D) in a
column, three quantities, X, Y, and borrow digit
B from the adjacent lower-ordered column must

required to accomplish the addition. In this type
of adder, the carry pulse from each column is pre-
sented to the next higher-order column so that the
proper sum is created.

B, = Borrow from next column

XnYnBna XnYnBna XnYnBna XaYnBna

ULy L
TT

Figure 19 Logic Charts and Connections for a Binary Subtracter

be considered. The complete subtraction rules, en-
compassing these three variables, ean be briefly
stated as follows: create a difference digit equal to
1 for this column whenever the total number of 1's
present in the three variables is an odd number;
create a difference digit whenever all three vari-
ables each equal 1 or whenever X is equal to 0
and Y or B equals 1.

These subtraction rules are shown displayed on
the logic charts in F'ig. 19. The T-PAC connections
for a binary subtracter are also shown in Fig. 19.
Serial subtraction requires two T-PACs, while
parallel subtraction requires two T-PACs per
column.

19

20

SERIAL UNITY ADDER

A serial unity adder, shown in Fig. 20, is a serial
adder for the special case in which the augend is a
binary number of any length, but the addend is
always equal to unity. The advantage of this de-
vice is that it requires only one T-PAC. In Fig. 20,

[o

U
— y Sum i©_
G - M pulse
periods
of delay
R
u Carry c
C P

Adder Capacity = (2* — 1)

Figure 20 Block Dlagram of Conventional Adder Connected as a Serial
Unity Adder

U is the unit add pulse, S is the sum pulse, C is
the carry pulse, and R is the accumulated result.

Due to the limitation placed on the addend, it
is impossible for a unit add pulse and a carry pulse
to arrive simultaneously at the inputs to the sum

and carry packages. The logic charts for the two
functions are shown in Fig. 21. The darker areas
depict the impossible combinations.

The chart for S is contrasted with the chart for
C. The chart for S shows that if only those com-
binations containing R = 1 are used, a chart is
obtained that is identical to the chart for C. Since
the darker squares represent impossible combina-
tions, these squares can be shaded or unshaded as
desired. Therefore, C can be related to S as follows:

C=8:R

However, since the carry that plays a role in the
addition of a certain column is always the result
of a carry formed a pulse period earlier, it would be
wise to acknowledge this timing by using C’, read
“C delayed one pulse period”, on the sum chart.

The last expression then reads C’' = S’ - R/

The sum chart employing C’ as a coordinate will
now be replaced with a sum chart employing S’
and R’ instead. The result obtained shows that:
S=@U-Rv@E-R-Bv
(U-R-R)v(U:-R -9
The connections for this single T-PAC are shown
in Fig. 21.

SERIAL UNITY SUBTRACTER

Employing techniques similar to those of the
serial unity adder, the following statement defines
the difference pulse S:

S=@®-U-RVvES-R-R)v _ _
(R-R-U)VR -0

Figure 21 Three Variable Logic Charts and Connections for single T-PAC
Unity Adder

= = o 0o Cc
O = = o A
- = O O C

= = O O C
o - = O 3
= = O O Cc

- = 0o o C

wi

S

f/=(X

Computing function

A (X A)

B’ B’ B’ B’ A’ B’ A’ B’ A'B A" B
Ly Uy L L) U [L
T T T T|| LT
c’ c’
Carry or Borrow Sum or Difference SvD

SERIAL ADDER-SUBTRACTER
WITH T-PACs

For the utmost flexibility in binary computation,
both addition and subtraction ean be performed
with three T-PACs, connected as shown in Fig. 22.
An additional add-subtract command funetion X
is required. This is in the form of a pulse train
which causes addition to be performed when a
pulse is present, and subtraction when a pulse is
absent. The variables required for the serial adder-
subtracter are:

Figure 23 Block Diagram of One Megacycle Shift Register

Figure 22 Combined Serial Adder-Subtracter with T-PACs

A = Augend or minuend.

B = Addend or subtrahend.

Carry or borrow (delayed from
preceding pulse period).

Add eommand.

= Subtraet command.

Difference.

Sum. .

(X - A)v (X - A) computing function.

Q

g M

1

—

Using these variables, the serial adder-subtracter
of Fig. 22 can be achieved with T-PACs.

Parallel
Information In
Serial Serial
Information 1 Information
Out Shift left Shift left In
e — . ——— -— -
High- Inter- Low-
order mediate order
Stage Stage Stage
. Shift right Shift right
Serial 8 . Serial
Information Information
Out

In

Parallel
Information Qut

21

ONE MEGACYCLE SHIFT REGISTER

The 1-megacycle shift register is capable of
doing the following functions up to the 1-megacycle
rate:

1. Shift serial binary information either left or

right.

2. Accept new information in serial form at

either end of the shift register.

3. Accept new information in parallel form.

4. Transmit its contents in serial form from
either end of the shift register.

5. Transmit its contents in parallel form from
the shift register.

The block diagram of this register, employing
only one T-PAC per stage, is given in Fig. 23.

Let
Wp = Write in “parallel information”.
P. = nth bit of “parallel information”.
I = Incoming bit of “serial information”.
C—— S P By I] e T

N L | ™ =

Rn = nth bit of register contents.
S: = “Shift right” command.
S1 = “Shift left"” command.

The T-PAC connections for a 1-Megaeyele shift
register are shown in Fig. 24.

SERIAL COMPARATORS

Serial ecomparators, shown in Figs. 25, 26, and
27, are devices used to compare two serial binary
numbers, A and B, and ascertain whether the
numbers . . .

A and B are equal
A is greater than B
A is less than B

The solution for ascertaining if the numbers are
equal requires special attention. If a disagreement
is encountered during a comparison, subsequent
agreement in later portions of the number or term
must not conceal the fact that the quantities had

Figure 24 T-PAC Connections for One Megacycle Shift Register

Serial Information Output
High Order First

Coose— e =1 sl [ll'- ________
l
e :j Serial
. Information
“ — — Oulput
™ Low Order
Si S : S| First

|
|
|
I
|
|
|
|
|
|
|
|
[
|

: Ec"p V!l" _— WP —_—
1 Sil—— _8_1 — §I —— =1
] gr —_ S — Si ——
e e - I e e e = I e e m——
‘High-order’ Typical ‘'middle’ ‘Low-order’
Stage Stage Stage!

22

Instruction:
Sel E = | at the
beginning of
the comparison

Figure 25 Logic Chart and Connections for Equality Comparator

Figure 26 Logic Chart and Connections for ‘greater than' Comparator

Let R = Initial reset pulse
6 =1 when A is greater than B,
G = 0 otherwise

Instiuction
Reset G = 0 at the
beginning of
the comparison

disagreed earlier. Therefore, the variable E is in-
troduced and is defined such that E equals 1 so
long as A equals B, but that E equals 0 after A and
B are found not to be equal. The variable E is the
output of the serial comparator, and is used also in
stating the conditions necessary for the output.

The logic chart for this serial comparison fune-
tion is shown in Fig. 25 with R being the initial
reset pulse. If E has been set equal to 1 at the be-
ginning of the comparison and the digits of A and
B agree, E remains equal to 1. Should a disagree-
ment between A and B appear, E becomes false
(E = 0) and, although future sets of A and B
digits agree, the false E prevents the successful
comparison. On the other hand, if A and B agree
throughout, then E will remain true all the time.

The definitions, logic charts, and T-PAC con-
nections for “greater than”” and “less than’ serial
comparators are shown in Figs. 26 and 27. Two
particular conditions govern these comparisons:

1. Agreements between A and B should not
affect the results of these comparisons that
are indicated by the darker areas of the
charts.

2. Since low-order numbers are received first,
the last disagreement in the comparison de-
crees the final result.

Figure 27 Logic Chart and Connections for ‘less than' Comparator

Let I]nilial reset pulse

when A is less than B,

R —— |
L=
L = 0 otherwise

Instruction:
Reset L = 0 at the
beginning of
the comparison

SERIAL GRAY CODE
TO BINARY CODE CONVERTER

The Gray code, used in shaft-to-digital con-
verters, is a reflected code: i.e., a code in which
only one column changes value every time the
number is increased one unit. Since the Gray code
does not lend itself to computation, a conversion
to binary code is frequently employed. The binary
code and its equivalent Gray code are shown in
the table below:

Binary Gray

Decimal
oo oo o T e o
0 0 0 0 0 0 0 0 0
1 0 0 o] 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 (o} 1 0 0 0 1 1 0
5 0 1 o 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 o 1 1 1 0 1 0 0

Let
B, = nth Binary digit

Gn = nth Gray code digit

The serial conversion is accomplished by treat-
ing the serial Gray-coded number high-order first
and implementing the statement:

Bn-l = (En " Gn-l) v {Bn . én-l)

T-PAC connections for this converter are shown
in Fig. 28.

Ll s sl

Figure 28 T-PAC Connections for Serial Gray Code to Binary Code Converter

PULSE PATTERN GENERATORS
(self-starting, free-running)

Pulse pattern generators are devices which gen-
erate sequential configurations of pulses with a
particular periodicity or repetitiveness. Such de-
vices are found to be extremely useful to the digital
designer for a variety of applications. These in-
clude clock frequency division, the generation of
complex timing control signals for arithmetic proc-
esses, the generation of pseudo-random numbers,
ete. T-PACs are ideal logical elements for the im-
plementation of pulse pattern generators. With a
single T-PAC Model LE-10 and a maximum of ten

unit delays, repetitive pulse patterns up to 63
microseconds in length (one microsecond equals
one pulse time) have been designed. With the use
of relatively few additional T-PACs periodicities
many thousand bits in length ean be achieved.

Fig. 29 illustrates the usage of T-PACs for very
short period pattern generators or frequency di-
viders. Patterns of greater length are created by
the same technique of logical feedback.

1 Mcps pulse train

%9%'}"@7—9 HHHIIH‘L\[U;A
% T T T
= 2 CIRCUIT (1 Output) + 3 CIRCUIT (1 Output)

Qg uy Ly g

+

]

+ 4 CIRCUIT (1 Output) + 4 CIRCUIT (2 Outputs that are combined

S
TRy

+ 5 CIRCUIT (2 Outputs that are combined
in the package using the =5 pulses)

+ 5 CIRCUIT (1 Output)

wuyw iy

=+ 6 CIRCUIT (2 Outputs) =+ 7 CIRCUIT (2 Outputs)

Figure 29 Self-starting Unambliguous Pulse Pattern Generators

26

ONE-SHOT PULSE PATTERN GENERATORS

A single pulse input can be delayed and regen- outputs delayed as desired. Fig. 30 illustrates such
erated to produce a unique self-quenching pattern. a pattern generator for obtaining delays up to 29
By sensing particular code sequences in this pat- pulse periods. The output package senses on
tern it is possible to obtain single or multiple pulse A, - A, - A; - A, + As. The reason for this can be

Pulse In#t

Assertion Outputs

L L

Delayed
Ai Az As ' 3 Outputs

Negation Qutputs

Figure 30 Wiring Diagram for 29 Pulse Period Delay

seen from inspection of the one-shot pattern gen-
erated by this wiring logic which is as follows:

timing
pattern
input
output

—» 0123456789101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
101 0 0 0

—» 0101011101 1 0 0 011111001 0 0)
—p 1 SELF-QUENCHING

— 1

This pattern was achieved by the implementation
of the truth table of Fig. 31 for the five binary
variables Aj, A,, A, A, and A; which at all times
represent a five pulse period sequential view of the
output of the initial T-PAC of Fig. 30. The num-
bers in the squares represent the sequence time-
wise of the occurrence of the five variables.

Figure 31

EDITOR'S NOTE: A future publication by 3C will
attempt to treat in more detail the logical design tech-
niques whereby free-running and self-quenching pat-
tern gemerators of specific configuration and perio-
dicity are achieved.

27

HISTORY

COMPUTER CONTROL COMPANY Inc. was
organized in 1952. From its inception two of the
major goals of the company have been:

1. Research, design, development, and market-
ing of an advanced line of high quality, ultra-
reliable digital building blocks.

2. Quality engineering of special purpose digital
systems.

In 1953 an additional major objective was achieved
with the formation of a Mathematical Services
Division. This activity is staffed by a highly com-
petent group of mathematicians who offer the
following services to government and industry:

3. Problem analysis, programming, coding and
machine computation.

4. General mathematical analysis and consul-
tation.

To best serve its expanding list of customers the 1
company has been organized about two geograph-
ical divisions. The Eastern Division is now located
in a modern well-equipped manufacturing plant
and laboratory in Framingham, Massachusetts,
twenty miles west of Boston. The Western
Division utilizes similarly well-equipped up-to-
date facilities at its strategic location in West
Los Angeles. .

[,gm."UTEH (X QT]T}?'}L_I}G

EASTERN DIVISION

%

f ; I %
- 4 »
. 4 » s T A !
V3 5 s 74
A ‘) b £
- Wy -t 3% 2 #
e —— . > 13 s . o . 'J“ '/'l
- ¥ a ¢ 4. s
', e -
- 1
: e B e 4 A < i
- - 2 : ¥
P e 1
f 2
o
g g = _"_

gt

T .\ " s wEE

29

Digital Diractor for Automatic Milling Machine

30

Automatic Decoder and Item Tabulator

Radio Telescope Director
Information Transmission Comparator e lemont ano nean view)

Computer Input-Output System

Information Retrieval System

ixsi\‘x‘ii" lili

‘"‘n!r“

Digital Comparator

Special Purpose Shift Register

High Speed Random Access All-Transistor
® Range Time Coder e Magnetic Core Memory

SYSTEMS .

These photographs show some of the custom engineered °
special purpose digital equipments and computers manufac-
tured by 3C for a variety of customers and for a variety
of applications. We regret that many other systems of unique ©
interest cannot be shown because of security classifications.

31

* Information Retrieval System ®
Digital Monitaring System lemanT ano nEan view Information Retrieval System

32

PRODUCTS

3C’s transistorized digital plug-in packages and other products and services are described in detail in the following
publications. Produect specifications and prices are included.

RANDOM

ACCESS
MAGNETIC CORE

. e
ac T pacs

[R

dvmeriptive Inloimution aml

techusival spevifications
-

TRANSISTORIZED T-PAL ONE MEGACYCLE

DIGITAL MODULES

CATALDG M-2

S
ac V] racs

TRANSISTORIZED MODULES

FOR DIGITAL SYSTEMS

Hitray
I
i
i

20 page Catalog M and sup- 16 page Catalog T and sup- 8 page Bulletin TCM describes 4 page Computing Services
plementary bulletins describe plementary bulletins describe 3C's all transistorized high- brochure lists the capabilities
the 3C-PAC series M-family of the 3C-PAC series T-family of speed random access ferrite and available services of the
compatible plug-in modules compatible plug-in modules core memories Mathematical Services Division

Available soon: Brochure deseribing SPEC, 3C's stored program educational compuler. SPEC is designed fo be used as
an educational tool and a general purpose compuler. I may also be expanded for use as a digital differential analyzer.

AVAILABILITY OF 3C SERVICES

To solve your digital problems COMPUTER
CONTROL COMPANY offers the services of
its staff of . . .

Circuit designers
Logical designers
Systems engineers

Mathematical analysts, computer
programmers and coders

Our complete flexibility permits a variety of
workable arrangements. We can share your
problems to whatever extent you wish, ranging
from minor consultation to complete design,
development, and construction.

Write, wire, or phone us for further informa-
tion.

33

~F

Page 4
Left column, ALGEBRA, paragraph 3 add . . .
ab = ba
4, Distributive Law
a(b+ ¢) =ab + ac
Paged

Right column, SYMBOLIC LOGIC, paragraph3add...

4, Distributive Laws
a(bve)=abvae
av(be) =(avb)(ave)

Page 6

ELECTRONIC IMPLEMENTATION column 4 line 4 read...

B Cc

O o]
Cr o

Page 6
VENN DIAGRAM, column 2 line 8 read . . .

Page 8

Right Column, ALTERNATE AND PREFERABLE STEP 2,

omit last two lines beginning “Application of step 3" ete.

Page 9
Figure 7, second chart from left, change caption to read . e

Page 9
Figure 7, fifth chart from the left, change caption to read .
fo =(A-B)v[A(BvC)) =Bv(A-C)

Page 9
Figure 7, eaption (below blue outline) add .

Application of step 8 to the Chart will show,f; =B v (A C)

(AR R R N R N N R N N R NN

Page 10

Figure 8, lower right hand gate, correct symbols to read . ..

SNt 1

Page 16 =
Figure 16, lower left diagram, read . . . De De

Page 18

Figure 18, lower right hand diagram, minimize to read .

Bllcl!!

Jd e

Cn Cq

Page 18
Left column, BINARY ADDER, lines 5 and 6, change to read...

Sum S = 0110 carry 1 to next higher eolumn.

Page 19
Figure 19, lower right-hand diagram, minimize to read .
¥Xo Bna XoYn YoBn.y
Bn By

Page 23 Page 23
Figure 26, lower diagram, minimize to read . . .
“affect the results of past comparisons that"” ete.
Page 23

Figure 27, lower diagram, minimize to read . . .

Ol

COMPUTER CONTROL COMPANY, INC.

983 CONCORD STREET « FRAMINGHAM « MASSACHUSETTS
2251 BARRY AVENUE « LOSANGELES64 =« CALIFORNIA

Right column, paragraph 3, sub paragraph 1, line two, read . . .

	Scan-090319-0001.jpg
	Scan-090319-0002.jpg
	Scan-090319-0003.jpg
	Scan-090319-0004.jpg
	Scan-090319-0005.jpg
	Scan-090319-0006.jpg
	Scan-090319-0007.jpg
	Scan-090319-0008.jpg
	Scan-090319-0009.jpg
	Scan-090319-0010.jpg
	Scan-090319-0011.jpg
	Scan-090319-0012.jpg
	Scan-090319-0013.jpg
	Scan-090319-0014.jpg
	Scan-090319-0015.jpg
	Scan-090319-0016.jpg
	Scan-090319-0017.jpg
	Scan-090319-0018.jpg
	Scan-090319-0019.jpg
	Scan-090319-0020.jpg
	Scan-090319-0021.jpg
	Scan-090319-0022.jpg
	Scan-090319-0023.jpg
	Scan-090319-0024.jpg
	Scan-090319-0025.jpg
	Scan-090319-0026.jpg
	Scan-090319-0027.jpg
	Scan-090319-0028.jpg
	Scan-090319-0029.jpg
	Scan-090319-0030.jpg
	Scan-090319-0031.jpg
	Scan-090319-0032.jpg
	Scan-090319-0033.jpg
	Scan-090319-0034.jpg
	Scan-090319-0035.jpg
	Scan-090319-0036.jpg
	Scan-090319-0037.jpg
	Scan-090319-0038.jpg

